21.行列式D非零的充分必要条件为( )A. D的所有元素非零B. D的任意两行元素之间不成比例C. 至少有n个元素非零D. 以D为系数行列式的线性方程组有唯一解
设向量组α,β,γ线性无关,α,β,δ线性相关,则A. α必可由β,γ,艿线性表示.B. β必不可由α,γ,δ线性表示.C. δ必可由α,β,γ线性表示.D. δ必不可由α,β,γ线性表示.
关于曲率下面说法正确的是A. 切线转过的角度越大曲率越大B. 弧长越短曲率越大C. 曲率与弧长和切线的转角都有关D. 以上说法均不对
1.设P(A)=0.4,P(B)=0.3,P(A∪B)=0.6,则P(Aoverline(B))=().A. 0.1B. 0.3C. 0.2D. 0.5
11.单选题(1分) 设lambda_(0)=2是可逆矩阵A的一个特征值,则矩阵A^-1必有一个特征值为( )A. 2B. (1)/(2)C. -2D. -(1)/(2)
求极限 lim _(n arrow infty) (sqrt(n^2)+a^(2))/(n)=________.
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f'(x)<0,则( )A. f(0)<0B. f(1)>0C. f(1)>f(0)D. f(1)<f(0)
10、填空 设f(5)=2,int_(0)^5f(x)dx=4,则int_(0)^5xf'(x)dx=_____.(3分)
二、向量组的秩及最大无关组6.设矩阵A=}1&1&2&2&10&2&1&5&-12&0&3&-1&31&1&0&4&-1,求矩阵A的列向量组的一个最大无关组,并把不属最大无关组的列向量用最大无关组线性表示.
12 填空 (3分) 设数列(x_{n)}的一般项x_(n)=(cosfrac(npi)/(2))(n),问lim_(ntoinfty)x_(n)=_.
热门问题
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
计算: (log )_(2)9cdot (log )_(3)4= __
12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 59 60 61 62 63 64 请找出左图表的规则(至少5个)
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4
下列命题中错误的是( )A B C D
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5
10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .
4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o
【填空题】sin dfrac (11)(6)pi =___.
已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。
下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111
与十进制[1]数 45.25 等值的十六进制[2]数是_____。
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。
24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.
已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an
从下面各数中找出所有的质数. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50