题目
(5)int ln^2(x+sqrt(1+x^2))dx;
(5)$\int ln^{2}(x+\sqrt{1+x^{2}})dx;$
题目解答
答案
设 $u = \ln^2(x + \sqrt{1 + x^2})$,则 $du = \frac{2\ln(x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}}dx$。
令 $dv = dx$,则 $v = x$。
由分部积分法得:
$\int u \, dv = uv - \int v \, du$
代入得:
$\int \ln^2(x + \sqrt{1 + x^2}) \, dx = x \ln^2(x + \sqrt{1 + x^2}) - 2 \int \frac{x \ln(x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}} \, dx$
令 $u = \sqrt{1 + x^2}$,则 $du = \frac{x}{\sqrt{1 + x^2}}dx$,积分变为:
$\int \frac{x \ln(x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}} \, dx = \int \ln(x + u) \, du$
使用分部积分法再次,最终得到:
$\int \ln^2(x + \sqrt{1 + x^2}) \, dx = x \ln^2(x + \sqrt{1 + x^2}) - 2\sqrt{1 + x^2} \ln(x + \sqrt{1 + x^2}) + 2x + C$
答案:
$\boxed{x \ln^2(x + \sqrt{1 + x^2}) - 2\sqrt{1 + x^2} \ln(x + \sqrt{1 + x^2}) + 2x + C}$