题目
4.计算二重积分 iint (x+y)dxdy ,其中D是由直线 y=-x ,y=1 ,x=0 所围-|||-成的平面区域.

题目解答
答案
:
$\iint (x+y)dxdy$
$=\int ^{1}_{0} {dy\int ^{y}_{-y} {(x+y)dx}}$
$=\int ^{1}_{0} {(2y+{y}^{2})dy}$
$=\frac {1} {2}-\frac {1} {6}$
$=\frac {1} {3}$
$\frac {1} {3}$
$\iint (x+y)dxdy$
$=\int ^{1}_{0} {dy\int ^{y}_{-y} {(x+y)dx}}$
$=\int ^{1}_{0} {(2y+{y}^{2})dy}$
$=\frac {1} {2}-\frac {1} {6}$
$=\frac {1} {3}$
$\frac {1} {3}$